Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 96: 117535, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37956505

RESUMO

As Alzheimer's disease (AD) is a neurodegenerative disease with a complex pathogenesis, the exploration of multi-target drugs may be an effective strategy for AD treatment. Multifunctional small molecular agents can be obtained by connecting two or more active drugs or privileged pharmacophores by multicomponent reactions (MCRs). In this paper, two series of polysubstituted pyrazine derivatives with multifunctional moieties were designed as anti-AD agents and synthesized by Passerini-3CR and Ugi-4CR. Since the oxidative stress plays an important role in the pathological process of AD, the antioxidant activities of the newly synthesized compounds were first evaluated. Subsequently, selected active compounds were further screened in a series of AD-related bioassays, including Aß1-42 self-aggregation and deaggregation, BACE-1 inhibition, metal chelation, and protection of SH-SY5Y cells from H2O2-induced oxidative damage. Compound A3B3C1 represented the best one with multifunctional potencies. Mechanism study showed that A3B3C1 acted on Nrf2/ARE signaling pathway, thus increasing the expression of related antioxidant proteins NQO1 and HO-1 to normal cell level. Furthermore, A3B3C1 showed good in vitro human plasma and liver microsome stability, indicating a potential for further development as multifunctional anti-AD agent.


Assuntos
Doença de Alzheimer , Neuroblastoma , Doenças Neurodegenerativas , Fármacos Neuroprotetores , Humanos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Antioxidantes/uso terapêutico , Peróxido de Hidrogênio/farmacologia , Inibidores da Colinesterase/farmacologia , Estresse Oxidativo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Desenho de Fármacos , Acetilcolinesterase/metabolismo
2.
Eur J Med Chem ; 261: 115832, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-37837674

RESUMO

Alzheimer's disease (AD) is a global health problem in the medical sector that will increase over time. The limited treatment of AD leads to the search for a new clinical candidate. Considering the multifactorial nature of AD, a strategy targeting number of regulatory proteins involved in the development of the disease is an effective approach. Here, we present a discovery of new multi-target-directed ligands (MTDLs), purposely designed as GABA transporter (GAT) inhibitors, that successfully provide the inhibitory activity against butyrylcholinesterase (BuChE), ß-secretase (BACE1), amyloid ß aggregation and calcium channel blockade activity. The selected GAT inhibitors, 19c and 22a - N-benzylamide derivatives of 4-aminobutyric acid, displayed the most prominent multifunctional profile. Compound 19c (mGAT1 IC50 = 10 µM, mGAT4 IC50 = 12 µM and BuChE IC50 = 559 nM) possessed the highest hBACE1 and Aß40 aggregation inhibitory activity (IC50 = 1.57 µM and 99 % at 10 µM, respectively). Additionally, it showed a decrease in both the elongation and nucleation constants of the amyloid aggregation process. In contrast compound 22a represented the highest activity and a mixed-type of eqBuChE inhibition (IC50 = 173 nM) with hBACE1 (IC50 = 9.42 µM), Aß aggregation (79 % at 10 µM) and mGATs (mGAT1 IC50 = 30 µM, mGAT4 IC50 = 25 µM) inhibitory activity. Performed molecular docking studies described the mode of interactions with GATs and enzymatic targets. In ADMET in vitro studies both compounds showed acceptable metabolic stability and low neurotoxicity. Successfully, compounds 19c and 22a at the dose of 30 mg/kg possessed statistically significant antiamnesic properties in a mouse model of amnesia caused by scopolamine and assessed in the novel object recognition (NOR) task or the passive avoidance (PA) task.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Camundongos , Animais , Butirilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Inibidores da Colinesterase/metabolismo , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Desenho de Fármacos , Ácido Aspártico Endopeptidases/metabolismo , Acetilcolinesterase/metabolismo
3.
Int J Mol Sci ; 24(11)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37298087

RESUMO

Alzheimer's disease (AD) is a complex disease with an unknown etiology. Available treatments, limited to cholinesterase inhibitors and N-methyl-d-aspartate receptor (NMDAR) antagonists, provide symptomatic relief only. As single-target therapies have not proven effective, rational specific-targeted combination into a single molecule represents a more promising approach for treating AD, and is expected to yield greater benefits in alleviating symptoms and slowing disease progression. In the present study, we designed, synthesized, and biologically evaluated 24 novel N-methylpropargylamino-quinazoline derivatives. Initially, compounds were thoroughly inspected by in silico techniques determining their oral and CNS availabilities. We tested, in vitro, the compounds' effects on cholinesterases and monoamine oxidase A/B (MAO-A/B), as well as their impacts on NMDAR antagonism, dehydrogenase activity, and glutathione levels. In addition, we inspected selected compounds for their cytotoxicity on undifferentiated and differentiated neuroblastoma SH-SY5Y cells. We collectively highlighted II-6h as the best candidate endowed with a selective MAO-B inhibition profile, NMDAR antagonism, an acceptable cytotoxicity profile, and the potential to permeate through BBB. The structure-guided drug design strategy applied in this study imposed a novel concept for rational drug discovery and enhances our understanding on the development of novel therapeutic agents for treating AD.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Doença de Alzheimer/tratamento farmacológico , Inibidores da Monoaminoxidase/uso terapêutico , Neuroblastoma/tratamento farmacológico , Inibidores da Colinesterase/uso terapêutico , Monoaminoxidase/metabolismo , Desenho de Fármacos , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade
4.
Bioorg Med Chem ; 88-89: 117333, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37236021

RESUMO

Butyrylcholinesterase (BuChE) and amyloid ß (Aß) aggregation remain important biological target and mechanism in the search for effective treatment of Alzheimer's disease. Simultaneous inhibition thereof by the application of multifunctional agents may lead to improvement in terms of symptoms and causes of the disease. Here, we present the rational design, synthesis, biological evaluation and molecular modelling studies of novel series of fluorene-based BuChE and Aß inhibitors with drug-like characteristics and advantageous Central Nervous System Multiparameter Optimization scores. Among 17 synthesized and tested compounds, we identified 22 as the most potent eqBuChE inhibitor with IC50 of 38 nM and 37.4% of Aß aggregation inhibition at 10 µM. Based on molecular modelling studies, including molecular dynamics, we determined the binding mode of the compounds within BuChE and explained the differences in the activity of the two enantiomers of compound 22. A novel series of fluorenyl compounds meeting the drug-likeness criteria seems to be a promising starting point for further development as anti-Alzheimer agents.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Humanos , Butirilcolinesterase/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Relação Estrutura-Atividade , Simulação de Dinâmica Molecular , Acetilcolinesterase/metabolismo , Desenho de Fármacos , Estrutura Molecular , Simulação de Acoplamento Molecular
5.
Eur J Med Chem ; 249: 115135, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-36696766

RESUMO

The symptomatic and disease-modifying effects of butyrylcholinesterase (BuChE) inhibitors provide an encouraging premise for researching effective treatments for Alzheimer's disease. Here, we examined a series of compounds with a new chemical scaffold based on 3-(cyclohexylmethyl)amino-2-hydroxypropyl, and we identified a highly selective hBuChE inhibitor (29). Based on extensive in vitro and in vivo evaluations of the compound and its enantiomers, (R)-29 was identified as a promising candidate for further development. Compound (R)-29 is a potent hBuChE inhibitor (IC50 = 40 nM) with selectivity over AChE and relevant off-targets, including H1, M1, α1A and ß1 receptors. The compound displays high metabolic stability on human liver microsomes (90% of the parent compound after 2 h of incubation), and its safety was confirmed through examining the cytotoxicity on the HepG2 cell line (LC50 = 2.85 µM) and hERG inhibition (less than 50% at 10 µM). While (rac)-29 lacked an effect in vivo and showed limited penetration to the CNS in pharmacokinetics studies, compound (R)-29 exhibited a procognitive effect at 15 mg/kg in the passive avoidance task in scopolamine-treated mice.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Camundongos , Animais , Humanos , Butirilcolinesterase/metabolismo , Cristalografia , Inibidores da Colinesterase/química , Doença de Alzheimer/metabolismo , Escopolamina/farmacologia , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular
6.
Eur J Med Chem ; 225: 113783, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34461507

RESUMO

Multifunctional ligands as an essential variant of polypharmacology are promising candidates for the treatment of multi-factorial diseases like Alzheimer's disease. Based on clinical evidence and following the paradigm of multifunctional ligands we have rationally designed and synthesized a series of compounds targeting processes involved in the development of the disease. The biological evaluation led to the discovery of two compounds with favorable pharmacological characteristics and ADMET profile. Compounds 17 and 35 are 5-HT6R antagonists (Ki = 13 nM and Ki = 15 nM respectively) and cholinesterase inhibitors with distinct mechanisms of enzyme inhibition. Compound 17, a tacrine derivative is a reversible inhibitor of acetyl- and butyrylcholinesterase (IC50 = 8 nM and IC50 = 24 nM respectively), while compound 35 with rivastigmine-derived phenyl N-ethyl-N-methylcarbamate fragment is a selective, pseudo-irreversible inhibitor of butyrylcholinesterase (IC50 = 455 nM). Both compounds inhibit aggregation of amyloid ß in vitro (75% for compound 17 and 68% for 35 at 10 µM) moreover, compound 35 is a potent tau aggregation inhibitor in cellulo (79%). In ADMET in vitro studies both compounds showed acceptable metabolic stability on mouse liver microsomes (28% and 60% for compound 17 and 35 respectively), no or little effect on CYP3A4 and 2D6 up to a concentration of 10 µM and lack of toxicity on HepG2 cell line (IC50 values of 80 and 21 µM, for 17 and 35 respectively). Based on the pharmacological characteristics and favorable pharmacokinetic properties, we propose compounds 17 and 35 as an excellent starting point for further optimization and in-depth biological studies.


Assuntos
Inibidores da Colinesterase/farmacologia , Descoberta de Drogas , Indóis/farmacologia , Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Animais , Butirilcolinesterase/metabolismo , Proliferação de Células/efeitos dos fármacos , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Electrophorus , Células Hep G2 , Cavalos , Humanos , Indóis/síntese química , Indóis/química , Ligantes , Camundongos , Microssomos Hepáticos/química , Microssomos Hepáticos/metabolismo , Simulação de Acoplamento Molecular , Estrutura Molecular , Agregados Proteicos/efeitos dos fármacos , Receptores de Serotonina/metabolismo , Relação Estrutura-Atividade , Proteínas tau/antagonistas & inibidores , Proteínas tau/metabolismo
7.
ACS Chem Neurosci ; 12(11): 2057-2068, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34019757

RESUMO

In Alzheimer's disease, neurons slowly degenerate due to the accumulation of misfolded amyloid ß and tau proteins. In our research, we performed extended studies directed at amyloid ß and tau aggregation inhibition using in cellulo (Escherichia coli model of protein aggregation), in silico, and in vitro kinetic studies. We tested our library of 1-benzylamino-2-hydroxyalkyl multifunctional anti-Alzheimer's agents and identified very potent dual aggregation inhibitors. Among the tested derivatives, we selected compound 18, which exhibited a unique profile of biological activity. This compound was the most potent and balanced dual aggregation inhibitor (Aß42 inhibition (inh.) 80.0%, tau inh. 68.3% in 10 µM), with previously reported in vitro inhibitory activity against hBuChE, hBACE1, and Aß (hBuChE IC50 = 5.74 µM; hBACE1 IC50 = 41.6 µM; Aß aggregation (aggr.) inh. IC50 = 3.09 µM). In docking studies for both proteins, we tried to explain the different structural requirements for the inhibition of Aß vs tau. Moreover, docking and kinetic studies showed that compound 18 could inhibit the amyloid aggregation process at several steps and also displayed disaggregating properties. These results may help to design the next generations of dual or selective aggregation inhibitors.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/farmacologia , Simulação por Computador , Desenho de Fármacos , Humanos , Cinética , Fragmentos de Peptídeos , Relação Estrutura-Atividade
8.
Eur J Med Chem ; 218: 113397, 2021 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-33838585

RESUMO

Looking for an effective anti-Alzheimer's agent is very challenging; however, a multifunctional ligand strategy may be a promising solution for the treatment of this complex disease. We herein present the design, synthesis and biological evaluation of novel hydroxyethylamine derivatives displaying unique, multiple properties that have not been previously reported. The original mechanism of action combines inhibitory activity against disease-modifying targets: ß-secretase enzyme (BACE1) and amyloid ß (Aß) aggregation, along with an effect on targets associated with symptom relief - inhibition of butyrylcholinesterase (BuChE) and γ-aminobutyric acid transporters (GATs). Among the obtained molecules, compound 36 exhibited the most balanced and broad activity profile (eeAChE IC50 = 2.86 µM; eqBuChE IC50 = 60 nM; hBuChE IC50 = 20 nM; hBACE1 IC50 = 5.9 µM; inhibition of Aß aggregation = 57.9% at 10 µM; mGAT1 IC50 = 10.96 µM; and mGAT2 IC50 = 19.05 µM). Moreover, we also identified 31 as the most potent mGAT4 and hGAT3 inhibitor (IC50 = 5.01 µM and IC50 = 2.95 µM, respectively), with high selectivity over other subtypes. Compounds 36 and 31 represent new anti-Alzheimer agents that can ameliorate cognitive decline and modify the progress of disease.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Descoberta de Drogas , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Fármacos Neuroprotetores/farmacologia , Doença de Alzheimer/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Relação Estrutura-Atividade
9.
J Enzyme Inhib Med Chem ; 35(1): 1944-1952, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33092411

RESUMO

Effective therapy of Alzheimer's disease (AD) requires treatment with a combination of drugs that modulate various pathomechanisms contributing to the disease. In our research, we have focused on the development of multi-target-directed ligands - 5-HT6 receptor antagonists and cholinesterase inhibitors - with disease-modifying properties. We have performed extended in vitro (FRET assay) and in cellulo (Escherichia coli model of protein aggregation) studies on their ß-secretase, tau, and amyloid ß aggregation inhibitory activity. Within these multifunctional ligands, we have identified compound 17 with inhibitory potency against tau and amyloid ß aggregation in in cellulo assay of 59% and 56% at 10 µM, respectively, hBACE IC50=4 µM, h5TH6 K i=94 nM, hAChE IC50=26 nM, and eqBuChE IC50=5 nM. This study led to the development of multifunctional ligands with a broad range of biological activities crucial not only for the symptomatic but also for the disease-modifying treatment of AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Inibidores da Colinesterase/química , Colinesterases/metabolismo , Receptores de Serotonina/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/prevenção & controle , Inibidores da Colinesterase/metabolismo , Desenho de Fármacos , Escherichia coli , Transferência Ressonante de Energia de Fluorescência , Humanos , Ligantes , Modelos Moleculares , Agregados Proteicos , Relação Estrutura-Atividade
10.
Eur J Med Chem ; 187: 111916, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31812794

RESUMO

Complex pathomechanism of Alzheimer's disease (AD) prompts researchers to develop multifunctional molecules in order to find effective therapy against AD. We designed and synthesized novel multifunctional ligands for which we assessed their activities towards butyrylcholinesterase, beta secretase, amyloid beta (Aß) and tau protein aggregation as well as antioxidant and metal-chelating properties. All compounds showed dual anti-aggregating properties towards Aß and tau protein in the in cellulo assay in Escherichia coli. Of particular interest are compounds 24b and 25b, which efficiently inhibit aggregation of Aß and tau protein at 10 µM (24b: 45% for Aß, 53% for tau; 25b: 49% for Aß, 54% for tau). They display free radical scavenging capacity and antioxidant activity in ABTS and FRAP assays, respectively, and selectively chelate copper ions. Compounds 24b and 25b are also the most potent inhibitors of BuChE with IC50 of 2.39 µM and 1.94 µM, respectively. Promising in vitro activities of the presented multifunctional ligands as well as their original scaffold are a very interesting starting point for further research towards effective anti-AD treatment.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Antioxidantes/farmacologia , Butirilcolinesterase/metabolismo , Quelantes/farmacologia , Inibidores da Colinesterase/farmacologia , Pirrolidinas/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Antioxidantes/síntese química , Antioxidantes/química , Benzotiazóis/antagonistas & inibidores , Quelantes/síntese química , Quelantes/química , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Electrophorus , Recuperação de Fluorescência Após Fotodegradação , Cavalos , Humanos , Estrutura Molecular , Agregados Proteicos/efeitos dos fármacos , Pirrolidinas/síntese química , Pirrolidinas/química , Relação Estrutura-Atividade , Ácidos Sulfônicos/antagonistas & inibidores
11.
J Med Chem ; 62(24): 11416-11422, 2019 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-31724859

RESUMO

New tritarget small molecules combining Ca2+ channels blockade, cholinesterase, and H3 receptor inhibition were obtained by multicomponent synthesis. Compound 3p has been identified as a very promising lead, showing good Ca2+ channels blockade activity (IC50 = 21 ± 1 µM), potent affinity against hH3R (Ki = 565 ± 62 nM), a moderate but selective hBuChE inhibition (IC50 = 7.83 ± 0.10 µM), strong antioxidant power (3.6 TE), and ability to restore cognitive impairment induced by lipopolysaccharide.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Bloqueadores dos Canais de Cálcio/farmacologia , Inibidores da Colinesterase/farmacologia , Fármacos Neuroprotetores/farmacologia , Receptores Histamínicos H3/química , Bibliotecas de Moléculas Pequenas/farmacologia , Vasodilatadores/farmacologia , Doença de Alzheimer/metabolismo , Animais , Bloqueadores dos Canais de Cálcio/química , Inibidores da Colinesterase/química , Humanos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/metabolismo , Camundongos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/metabolismo , Fármacos Neuroprotetores/química , Bibliotecas de Moléculas Pequenas/química , Células Tumorais Cultivadas , Vasodilatadores/química
12.
Arch Pharm (Weinheim) ; 352(7): e1900041, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31162703

RESUMO

Serotonin 5-HT6 receptors, butyrylcholinesterase (BuChE) and oxidative stress are related to the pathophysiology of Alzheimer's disease. Inhibition of BuChE provides symptomatic treatment of the disease and the same effect was demonstrated for 5-HT 6 antagonists in clinical trials. Oxidative stress is regarded as a major and primary factor contributing to the development of Alzheimer's disease; therefore, antioxidant agents may provide a disease-modifying effect. Combining BuChE inhibition, 5-HT 6 antagonism, and antioxidant properties may result in multitarget-directed ligands providing cognition-enhancing properties with neuroprotective activity. On the basis of the screening of the library of 5-HT 6 antagonists against BuChE, we selected two compounds and designed their structural modifications that could lead to improved BuChE inhibitory activity. We synthesized two series of compounds and tested their affinity and functional activity at 5-HT 6 receptors, BuChE inhibitory activity and antioxidant properties. Compound 12 with K i and K b values against 5-HT 6 receptors of 41.8 and 74 nM, respectively, an IC 50 value of 5 µM against BuChE and antioxidant properties exceeding the activity of ascorbic acid is a promising lead structure for further development of anti-Alzheimer's agents.


Assuntos
Antioxidantes/farmacologia , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Animais , Antioxidantes/síntese química , Antioxidantes/química , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Electrophorus , Cavalos , Humanos , Modelos Moleculares , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Antagonistas da Serotonina/síntese química , Antagonistas da Serotonina/química , Triazinas/antagonistas & inibidores
13.
Molecules ; 23(2)2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29414887

RESUMO

The complex nature of Alzheimer's disease calls for multidirectional treatment. Consequently, the search for multi-target-directed ligands may lead to potential drug candidates. The aim of the present study is to seek multifunctional compounds with expected activity against disease-modifying and symptomatic targets. A series of 15 drug-like various substituted derivatives of 2-(benzylamino-2-hydroxyalkyl)isoindoline-1,3-diones was designed by modification of cholinesterase inhibitors toward ß-secretase inhibition. All target compounds have been synthesized and tested against eel acetylcholinesterase (eeAChE), equine serum butyrylcholinesterase (eqBuChE), human ß-secretase (hBACE-1), and ß-amyloid (Aß-aggregation). The most promising compound, 12 (2-(5-(benzylamino)-4-hydroxypentyl)isoindoline-1,3-dione), displayed inhibitory potency against eeAChE (IC50 = 3.33 µM), hBACE-1 (43.7% at 50 µM), and Aß-aggregation (24.9% at 10 µM). Molecular modeling studies have revealed possible interaction of compound 12 with the active sites of both enzymes-acetylcholinesterase and ß-secretase. IN CONCLUSION: modifications of acetylcholinesterase inhibitors led to the discovery of a multipotent anti-Alzheimer's agent, with moderate and balanced potency, capable of inhibiting acetylcholinesterase, a symptomatic target, and disease-modifying targets: ß-secretase and Aß-aggregation.


Assuntos
Desenho de Fármacos , Isoindóis/química , Isoindóis/farmacologia , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/química , Butirilcolinesterase/química , Técnicas de Química Sintética , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Relação Dose-Resposta a Droga , Ligação de Hidrogênio , Concentração Inibidora 50 , Isoindóis/síntese química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Relação Estrutura-Atividade
14.
ACS Chem Neurosci ; 9(5): 1074-1094, 2018 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-29345897

RESUMO

The multitarget approach is a promising paradigm in drug discovery, potentially leading to new treatment options for complex disorders, such as Alzheimer's disease. Herein, we present the discovery of a unique series of 1-benzylamino-2-hydroxyalkyl derivatives combining inhibitory activity against butyrylcholinesterase, ß-secretase, ß-amyloid, and tau protein aggregation, all related to mechanisms which underpin Alzheimer's disease. Notably, diphenylpropylamine derivative 10 showed balanced activity against both disease-modifying targets, inhibition of ß-secretase (IC50  hBACE-1 = 41.60 µM), inhibition of amyloid ß aggregation (IC50 Aß = 3.09 µM), inhibition of tau aggregation (55% at 10 µM); as well as against symptomatic targets, butyrylcholinesterase inhibition (IC50  hBuChE = 7.22 µM). It might represent an encouraging starting point for development of multifunctional disease-modifying anti-Alzheimer's agents.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase/farmacologia , Inibidores da Colinesterase/farmacologia , Desenho de Fármacos , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Humanos , Simulação de Acoplamento Molecular/métodos , Fragmentos de Peptídeos/metabolismo , Relação Estrutura-Atividade , Proteínas tau/efeitos dos fármacos
15.
Future Med Chem ; 9(15): 1835-1854, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28925729

RESUMO

The emergence of a multitarget design approach in the development of new potential anti-Alzheimer's disease agents has resulted in the discovery of many multifunctional compounds focusing on various targets. Among them the largest group comprises inhibitors of both cholinesterases, with additional anti-ß-amyloid aggregation activity. This review describes recent advances in this research area and presents the most interesting compounds reported over a 2-year span (2015-2016). The majority of hybrids possess heterodimeric structures obtained by linking structurally active fragments interacting with different targets. Multipotent cholinesterase inhibitors with ß-amyloid antiaggregating activity may additionally possess antioxidative, neuroprotective or metal-chelating properties or less common features such as anti-ß-secretase or τ-antiaggregation activity.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Colinesterases/metabolismo , Alcaloides/química , Alcaloides/metabolismo , Alcaloides/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/antagonistas & inibidores , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/uso terapêutico , Colinesterases/química , Donepezila , Humanos , Indanos/química , Indanos/metabolismo , Concentração Inibidora 50 , Piperidinas/química , Piperidinas/metabolismo , Rivastigmina/química , Rivastigmina/metabolismo , Tacrina/química , Tacrina/metabolismo
16.
Eur J Med Chem ; 125: 676-695, 2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-27721153

RESUMO

The complexity of Alzheimer's disease (AD) calls for search of multifunctional compounds as potential candidates for effective therapy. A series of phthalimide and saccharin derivatives linked by different alicyclic fragments (piperazine, hexahydropyrimidine, 3-aminopyrrolidine or 3-aminopiperidine) with phenylalkyl moieties attached have been designed, synthesized, and evaluated as multifunctional anti-AD agents with cholinesterase, ß-secretase and ß-amyloid inhibitory activities. In vitro studies showed that the majority of saccharin derivatives with piperazine moiety and one phthalimide derivative with 3-aminopiperidine fragment exhibited inhibitory potency toward acetylcholinesterase (AChE) with EeAChE IC50 values ranging from 0.83 µM to 19.18 µM. The target compounds displayed inhibition of human ß-secretase-1 (hBACE1) ranging from 26.71% to 61.42% at 50 µM concentration. Among these compounds, two multifunctional agents (26, [2-(2-(4-benzylpiperazin-1-yl)ethyl)benzo[d]isothiazol-3(2H)-one 1,1-dioxide] and 52, 2-(2-(3-(3,5-difluorobenzylamino)piperidin-1-yl)ethyl)isoindoline-1,3-dione) have been identified. Compound 26 exhibited the highest inhibitory potency against EeAChE (IC50 = 0.83 µM) and inhibitory activity against hBACE1 (33.61% at 50 µM). Compound 52 is a selective AChE inhibitor (IC50 AChE = 6.47 µM) with BACE1 inhibitory activity (26.3% at 50 µM) and it displays the most significant Aß anti-aggregating properties among all the obtained compounds (39% at 10 µM). Kinetic and molecular modeling studies indicate that 26 may act as non-competitive AChE inhibitor able to interact with both catalytic and peripheral active site of the enzyme.


Assuntos
Aminas/química , Aminas/farmacologia , Ftalimidas/química , Ftalimidas/farmacologia , Sacarina/química , Sacarina/farmacologia , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Sítios de Ligação , Barreira Hematoencefálica/efeitos dos fármacos , Colinesterases/metabolismo , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Concentração Inibidora 50 , Estrutura Molecular , Fragmentos de Peptídeos/metabolismo , Ftalimidas/síntese química , Agregação Patológica de Proteínas , Ligação Proteica/efeitos dos fármacos , Sacarina/síntese química
17.
Eur J Med Chem ; 126: 576-589, 2017 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-27918993

RESUMO

Herein we report an efficient two step synthesis and biological assessment of 12 racemic tetrahydropyranodiquinolin-8-amines derivatives as antioxidant, cholinesterase inhibitors and non-hepatotoxic agents. Based on the results of the primary screening, we identified 7-(3-methoxyphenyl)-9,10,11,12-tetrahydro-7H-pyrano[2,3-b:5,6-h']diquinolin-8-amine (2h) as a particularly interesting non-hepatotoxic compound that shows moderate antioxidant activity (1.83 equiv Trolox in the ORAC assay), a non competitive inhibition of hAChE (IC50 = 0.75 ± 0.01 µM), and brain permeable as determined by the PAMPA-Blood Brain Barrier assay.


Assuntos
Aminoquinolinas/farmacologia , Antioxidantes/farmacologia , Inibidores da Colinesterase/farmacologia , Acetilcolinesterase , Doença de Alzheimer/tratamento farmacológico , Aminoquinolinas/síntese química , Antioxidantes/química , Barreira Hematoencefálica/metabolismo , Doença Hepática Induzida por Substâncias e Drogas , Inibidores da Colinesterase/química , Proteínas Ligadas por GPI/antagonistas & inibidores , Humanos
18.
Bioorg Med Chem Lett ; 26(16): 4140-5, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27445168

RESUMO

In recent years, multitarget-directed ligands have become an interesting strategy in a search for a new treatment of Alzheimer's disease. Combination of both: a histamine H3 receptor antagonist/inverse agonist and a cholinesterases inhibitor in one molecule could provide a new therapeutic opportunity. Here, we present biological evaluation of histamine H3 receptor ligands-chlorophenoxyalkylamine derivatives against cholinesterases: acetyl- and butyrylcholinesterase. The target compounds showed cholinesterase inhibitory activity in a low micromolar range. The most potent in this group was 1-(7-(4-chlorophenoxy)heptyl)homopiperidine (18) inhibiting the both enzymes (EeAChE IC50=1.93µM and EqBuChE IC50=1.64µM). Molecular modeling studies were performed to explain the binding mode of 18 with histamine H3 receptor as well as with cholinesterases.


Assuntos
Acetilcolinesterase/metabolismo , Aminas/química , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Piperidinas/química , Receptores Histamínicos H3/metabolismo , Acetilcolinesterase/química , Sítios de Ligação , Butirilcolinesterase/química , Domínio Catalítico , Humanos , Cinética , Ligantes , Simulação de Acoplamento Molecular , Piperidinas/síntese química , Receptores Histamínicos H3/química , Relação Estrutura-Atividade
19.
Molecules ; 21(4): 410, 2016 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-27023510

RESUMO

Cholinesterases and amyloid beta are one of the major biological targets in the search for a new and efficacious treatment of Alzheimer's disease. The study describes synthesis and pharmacological evaluation of new compounds designed as dual binding site acetylcholinesterase inhibitors. Among the synthesized compounds, two deserve special attention--compounds 42 and 13. The former is a saccharin derivative and the most potent and selective acetylcholinesterase inhibitor (EeAChE IC50 = 70 nM). Isoindoline-1,3-dione derivative 13 displays balanced inhibitory potency against acetyl- and butyrylcholinesterase (BuChE) (EeAChE IC50 = 0.76 µM, EqBuChE IC50 = 0.618 µM), and it inhibits amyloid beta aggregation (35.8% at 10 µM). Kinetic studies show that the developed compounds act as mixed or non-competitive acetylcholinesterase inhibitors. According to molecular modelling studies, they are able to interact with both catalytic and peripheral active sites of the acetylcholinesterase. Their ability to cross the blood-brain barrier (BBB) was confirmed in vitro in the parallel artificial membrane permeability BBB assay. These compounds can be used as a solid starting point for further development of novel multifunctional ligands as potential anti-Alzheimer's agents.


Assuntos
Acetilcolinesterase/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/uso terapêutico , Inibidores da Colinesterase/uso terapêutico , Agregação Patológica de Proteínas/tratamento farmacológico , Acetilcolinesterase/química , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/síntese química , Peptídeos beta-Amiloides/química , Sítios de Ligação , Barreira Hematoencefálica/efeitos dos fármacos , Butirilcolinesterase/química , Butirilcolinesterase/uso terapêutico , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Humanos , Isoindóis/síntese química , Isoindóis/química , Isoindóis/uso terapêutico , Ligantes , Modelos Moleculares , Agregação Patológica de Proteínas/metabolismo , Relação Estrutura-Atividade
20.
Pharmacol Rep ; 68(1): 127-38, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26721364

RESUMO

Alzheimer's disease (AD) is considered to be the most common cause of dementia and is an incurable, progressive neurodegenerative disorder. Current treatment of the disease, essentially symptomatic, is based on three cholinesterase inhibitors and memantine, affecting the glutamatergic system. Since 2003, no new drugs have been approved for treatment of AD. This article presents current directions in the search for novel, potentially effective agents for the treatment of AD, as well as selected promising treatment strategies. These include agents acting upon the beta-amyloid, such as vaccines, antibodies and inhibitors or modulators of γ- and ß-secretase; agents directed against the tau protein as well as compounds acting as antagonists of neurotransmitter systems (serotoninergic 5-HT6 and histaminergic H3). Ongoing clinical trials with Aß antibodies (solanezumab, gantenerumab, crenezumab) seem to be promising, while vaccines against the tau protein (AADvac1 and ACI-35) are now in early-stage trials. Interesting results have also been achieved in trials involving small molecules such as inhibitors of ß-secretase (MK-8931, E2609), a combination of 5-HT6 antagonist (idalopirdine) with donepezil, inhibition of advanced glycation end product receptors by azeliragon or modulation of the acetylcholine response of α-7 nicotinic acetylcholine receptors by encenicline. Development of new effective drugs acting upon the central nervous system is usually a difficult and time-consuming process, and in the case of AD to-date clinical trials have had a very high failure rate. Most phase II clinical trials ending with a positive outcome do not succeed in phase III, often due to serious adverse effects or lack of therapeutic efficacy.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Peptídeos beta-Amiloides/antagonistas & inibidores , Ensaios Clínicos como Assunto/métodos , Proteínas tau/antagonistas & inibidores , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Humanos , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...